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In many low-frequency field simulations one is interested in a highly accurate evaluation of the field distribution in an observer
region. We propose defect correction as an easy to implement and efficient alternative to higher order finite elements or hybrid
approaches. Commonly splines have been used on structured grids for the reconstruction of the solution. Here, we introduce the use
of radial basis functions on unstructured grids and study the convergence on the basis of an academic example.
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I. INTRODUCTION

IN many low-frequency field simulations, e.g., of bending or
focusing magnets used in particle accelerators, one is only

interested in the magnetic field distribution within an observer
region. Here, one typically aims at locally uniform magnetic
fields, quantified by multipole coefficients (Fourier harmonics)
[1]. These quantities of interest need to be evaluated with high
accuracy, as undesired multipoles of even small magnitude
might influence the device’s performance. As the solution
is smooth in those regions a local p-adaptive finite element
approach is a very efficient strategy to this end. Moreover,
several dedicated schemes have been presented in the literature:
we mention a BEM-FEM coupling [2], a hybrid finite element,
spectral element scheme described in [3], and [4] where an
improved field gradient was obtained by a local post-processing
based on an analytical solution.

However, the approaches mentioned require significant code
modifications. Here, we investigate another approach, referred
to as defect correction. It is also based on a reconstructed
solution. However, additionally a part of the numerical error is
estimated and removed from the solution to obtain an improved
result. Defect correction is often applied on structured grids
based on a tensor-product spline reconstruction, see [5]. The
case of an unstructured grid did not receive much attention so
far. In [5] biharmonic smoothing was presented and analyzed.
As solvers for the biharmonic equation are typically unavail-
able in a computational magnetics context we present a radial
basis function reconstruction as an alternative in this paper.
Numerical results are given to illustrate the accuracy of the
defect corrected multipoles.

II. PROBLEM FORMULATION

To focus on the defect correction principles we consider
a two-dimensional, magnetostatic setup. Let the computa-
tional domain Ω be composed of a ferromagnetic and non-
ferromagnetic domain Ωfer and Ω0, respectively. The magnetic

reluctivity is assumed to be constant ν(~x, ·) = ν0, for ~x ∈ Ω0

and a function of the magnetic field ν(~x, | ~B|) = ν(| ~B|), for
~x ∈ Ωfer. For simplicity we omit the explicit dependency on
~x from now on. Applying the Newton-Raphson method to the
magnetostatic problem, we obtain for the k-th iterate u(k)

−∇ ·
(
νL( ~B(k−1))∇u(k)

)
= f( ~B(k−1)), (1)

in Ω, together with suitable interface and Dirichlet boundary
conditions. In (1) u refers to the remaining component of the
magnetic vector potential and f contains both source terms and
contributions of the magnetic flux density at step k − 1; νL

refers to the tensor valued linearized reluctivity. The associated
weak formulation reads, find u ∈ V = H1

0 (Ω) such that
∫

Ω

νL( ~B(k−1))∇u(k) · ∇v dx =

∫

Ω

f( ~B(k−1))v dx, (2)

for all v ∈ V . Multipole coefficients are extracted from u or
~B, in a small region Ωobs ⊂ Ω0. Following [1, p.243] in a
local polar coordinate system at a reference radius rref

u(rref , ϕ) =

∞∑

n=1

(Fn cos(nϕ) + En sin(nϕ)) . (3)

The coefficients Fn and En are referred to as normal and skew
multipole coefficients, respectively. In the following we focus
on the normal multipole coefficients solely. As Fn at rref is
given by

Fn(u) =
1

π

2π∫

0

u(rref , ϕ) cos(nϕ) dx, (4)

each coefficient is a linear functional of the solution. In practice
they can be obtained using a discrete Fourier transform on
a circle of radius rref . Finally, we discretize (2) by finite
elements, i.e., look for uh ∈ Vh the space of lowest order nodal
elements on a triangular mesh. Then the multipole coefficients
Fh,n are obtained by replacing u with uh in (4).



III. DEFECT CORRECTION

The fundamental idea is to interpolate the low-order numeri-
cal solution between the finite element nodes (~xi)

N
i=1 to obtain

a higher order reconstruction of the true solution. Following
[5], given a reconstructed solution π∗u(k)

h = u
(k)∗
h , we solve

for the correction e(k)
h ∈ Vh subject to

∫

Ω

νL( ~B
(k−1)
h )∇e(k)

h · ∇vh dx =

∫

Ω

f( ~B
(k−1)
h )vh dx

−
∫

Ω

νL( ~B
(k−1)
h )∇u(k)∗

h · ∇vh dx, ∀vh ∈ Vh, (5)

to obtain an improved solution π∗(u(k)
h + e

(k)
h ) and hence

improved multipole coefficients. Defect correction can thus be
regarded as an inexact Newton step [6]. The integrals appearing
on the right-hand side of equation (5) are evaluated using a
Gaussian quadrature of degree two.

On a structured grid, bivariate cubic spline interpolation can
be used. On an unstructured grid we determine a radial basis
function, more precisely a thin plate spline

π∗uh(~x) =

N∑

i=1

αi|~x− ~xi|2log(|~x− ~xi|) + p(~x), (6)

such that π∗uh(~xi) = uh(~xi), ∀i = 1, . . . , N , where p is a
polynomial function to achieve uniqueness. Due to the non-
local support of radial basis functions, the determination of
the αi requires the solution of a dense system of equations.
However, as we are interested in the error in Ωobs solely, the
reconstruction can be restricted to Ωobs. If in addition, the
approximation of the geometry and its singularities is accurate
enough, the overall discretization error will be efficiently
reduced. Convergence rates for the defect correction scheme
have been given in [5]. In particular for smooth solutions,
defect correction based on cubic splines yields an O(h4) error
decay for the multipole coefficients. In the case of thin plate
splines we analyze the convergence rate numerically in the
following section.

IV. NUMERICAL EXAMPLE

For illustration we consider an academic example. The
results are obtained using the open-source software FEniCS [7].
On the domain Ω = [−1, 1]2 with constant linear reluctivity
and vanishing current density, we obtain an ideal (normal) sex-
tupole field u = x3−3xy2 by taking u as a non-homogeneous
Dirichlet boundary condition. At a reference radius rref = 0.2
we numerically approximate F3 = 0.008. Starting with an
unstructured grid of mesh size h := 1/

√
N = 0.125, which

is aligned at the reference circle, several steps of uniform
mesh refinement are carried out. The multipole coefficients
are computed performing an FFT along the reference circle.
The results are depicted in Figure 1. We observe an improved
convergence rate from h1.96 to h3.05 for the thin plate spline
defect corrected multipoles.

V. CONCLUSION AND OUTLOOK

We have described how to improve the accuracy in the nu-
merically evaluated multipole coefficients by defect correction.

Carrying out an additional (inexact) Newton step after post-
processing the finite element solution, an improved conver-
gence rate could be observed for an example on unstructured
grids. On structured grids more accurate results can be expected
by a bivariate spline reconstruction [5].
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Fig. 1. Discretization error in sextupole component F3 computed with
standard lowest order finite elements and defect correction using thin plate
splines. The error decay with respect to the mesh size is improved from
approximately h2 to h3.

only minor modifications of the computational code. The
additional cost consists in solving a (dense) linear system of
equations as well as one additional solve of the linearized
finite element system. Restricting the reconstruction to a small
observer region the size of the dense system of equations can
be kept small. Hence, we expect to obtain an improved overall
numerical complexity with respect to standard lowest order
finite elements.

A complexity analysis and a precise description of the local
reconstruction is subject of ongoing work. Also a theoretical
investigation for the convergence rates obtained by the thin
plate spline reconstruction is carried out. Finally, the use of
adjoint correction techniques [5] is a promising tool to further
enhance the defect correction capabilities.
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Fig. 1. Discretization error in sextupole component F3 computed with
standard lowest order finite elements and defect correction using thin plate
splines. The error decay with respect to the mesh size is improved from
approximately h2 to h3.

The scheme requires only minor modifications of the com-
putational code. As the size of the dense system of equations to
be solved can be kept small, we expect to obtain an improved
overall numerical complexity with respect to standard lowest
order finite elements.

A complexity analysis and a precise description of the local
reconstruction is subject of ongoing work. Also a theoretical
investigation for the convergence rates obtained by the thin
plate spline reconstruction is carried out. Finally, the use of
adjoint correction techniques [5] is a promising tool to further
enhance the defect correction capabilities.
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